Power MOSFET

30 V, 94 A, Single N-Channel, SOIC-8 FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These are Pb-Free Devices

Applications

- VCORE Applications
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T, I=25°C unless otherwise stated)

R	ating	Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	18	Α
Current R _{θJA} (Note 1)		T _A = 85°C	1	13	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.35	W
Continuous Drain		T _A = 25°C	I _D	11	Α
Current $R_{\theta JA}$ (Note 2)	Steady	T _A = 85°C	1	8.0	
Power Dissipation R _{θJA} (Note 2)	State	T _A = 25°C	P _D	0.91	W
Continuous Drain		T _C = 25°C	I _D	94	Α
Current R _{θJC} (Note 1)		T _C = 85°C		68	
Power Dissipation R _{θJC} (Note 1)	T _C = 25°C		P _D	62.5	W
Pulsed Drain Cur- rent		= 25°C, : 10 μs	I _{DM}	140	Α
Current limited by package	T _A :	= 25°C	I _{DmaxPkg}	140	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)			I _S	62.5	Α
Drain to Source			dV/dt	10	V/ns
Single Pulse Drain-to–Source Avalanche Energy T_J = 25°C, V_{DD} = 50 V, V_{GS} = 10 V, I_L = 30 A_{pk} , L = 1.0 mH, R_G = 25 Ω			E _{AS}	450	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
30 V	2.85 mΩ @ 10 V	94 A
00 1	4.0 mΩ @ 4.5 V	34 A

STYLE 1

MARKING DIAGRAM & PIN ASSIGNMENT

4709N = Specific Device Code = Assembly Location

= Year W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4709NT1G	SOIC-8 FL (Pb-Free)	1500 / Tape & Reel
NTMFS4709NT3G	SOIC-8 FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	2.0	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	53.2	
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	137.8	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Temperature Coefficient Jacob J	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Temperature Coefficient	OFF CHARACTERISTICS	•	•			•		•
Temperature Coefficient Jose J	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		30			V
Vas = 24 V Vas = 25° C TJ = 125° C 10 10		V _{(BR)DSS} /T				5.6		mV/°C
Age	Zero Gate Voltage Drain Current	I _{DSS}		T _J = 25°C			1.0	μΑ
On Characteristics (Note 5)			V _{DS} = 24 V	T _J = 125°C			10	
Section Continue	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	′ _{GS} = ±20 V			±100	nA
Negative Threshold Temperature Coefficient V _{GS(TH)} /T _J 5.6 mV/r	ON CHARACTERISTICS (Note 5)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I	D = 250 μA	1.0		3.0	V
ID = 15 A 2.8 Mag 10 V ID = 30 A 2.85 3.6 Mag 3.6 Vas = 1.5 V ID = 30 A 4.0 5.5 Mag 3.6 Vas = 4.5 V ID = 30 A 4.0 5.5 Mag 3.6 Vas = 4.5 V ID = 15 A 4.0 Mag 3.6 Vas = 1.5 V ID = 15 A 4.0 Mag 3.6 Vas = 1.5 V ID = 1.5 A 4.0 Mag 3.6 Vas = 1.5 V ID = 1.5 A 4.0 Mag 3.6 Vas = 1.5 V ID = 1.5 A 4.0 Mag 3.0	Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.6		mV/°C
V _{GS} = 10 V I _D = 30 A 2.85 3.6 MS V _{GS} = 4.5 V I _D = 30 A 4.0 5.5 I _D = 15 A 4.0	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 11.5 V	I _D = 30 A		2.8		†
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				I _D = 15 A		2.8		
Total Gate Charge Qag(TH) Total Gate Charge Qag(TH) Total Gate Charge Qag(TH) Characte Charge Qag(TH) Character Charge Qag(TH) Charact			V _{GS} = 10 V	I _D = 30 A		2.85	3.6	mΩ
Forward Transconductance gFS VDS = 15 V, ID = 15 A 41 S			V _{GS} = 4.5 V	I _D = 30 A		4.0	5.5	1
CHARGES AND CAPACITANCES Input Capacitance Ciss Coss C				I _D = 15 A		4.0		
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{ISS} \\ \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{G(TH)} \\ \hline \text{Gate-to-Source Charge} & Q_{G(TOT)} \\ \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{G(TOT)} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{SWITCHING CHARACTERISTICS (Note 6)} \\ \hline \text{Turn-On Delay Time} & t_{d(OFF)} \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \end{array}$	Forward Transconductance	9FS	V _{DS} = 15 V, I _D = 15 A			41		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES AND CAPACITANCES							
Reverse Transfer Capacitance C_{OSS} $V_{DS} = 12 \text{ V}$ C_{CRS} C_{CR	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 12 V			2370		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{OSS}				1240		
Threshold Gate Charge $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}				305		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V},$	V _{DS} = 15 V;		2.4		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Charge	Q_{GS}	I _D = 3	30 Å		4.5		
Threshold Gate Charge $Q_{G(TH)} = Q_{GS} = 11.5 \text{ V}, V_{DS} = 15 \text{ V};$ $Q_{GS} = 11.5 \text{ V}, V_{DS} = 15 \text{ V};$ $Q_{GS} = 10.6 \text{ M}$ $Q_{GS} = 11.5 \text{ V}, V_{DS} = 15 \text{ V};$ $Q_{GS} = 10.6 \text{ M}$ $Q_{GS} = 10.6 $	Gate-to-Drain Charge	Q_{GD}	1			11		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				48		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 11.5 V, V_{DS} = 15 V; I_{D} = 30 A			4.0		nC
SWITCHING CHARACTERISTICS (Note 6)	Gate-to-Source Charge	Q_{GS}				6.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}				10.6		
Rise Time $ \begin{array}{c c} t_r & V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} & I_D = 30 \text{ A}, R_G = 3.0 \Omega & 20 \\ \end{array} $	SWITCHING CHARACTERISTICS (Note 6)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 30 \text{ A}, R_{G} = 3.0 \Omega$			16		
u(orr)	Rise Time					173		
	Turn-Off Delay Time	t _{d(OFF)}				20		ns
	Fall Time					105		1

^{5.} Pulse Test: pulse width $\pm\,300~\mu\text{s},$ duty cycle $\pm\,2\%$

Surface-mounted on FR4 board using 1 sq in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

^{6.} Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note 6)	-						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 11.5 V, V_{DS} = 15 V, I_{D} = 30 A, R_{G} = 3.0 Ω			8.5		
Rise Time	t _r				87		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 30 \text{ A, F}$	$R_{G} = 3.0 \Omega$		31.5		ns
Fall Time	t _f	1			8.5		1
DRAIN-SOURCE DIODE CHARACTERIST	cs						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 20 A	T _J = 25°C		0.75	1.0	V
		V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.85		
		V _{GS} = 0 V, I _S = 20 A	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}				48		
Charge Time	ta	$V_{GS} = 0 \text{ V},$ $d_{IS}/d_t = 100 \text{ A/}\mu\text{s},$ $I_S = 25 \text{ A}$			23		ns
Discharge Time	t _b				25		
Reverse Recovery Charge	Q _{RR}				55		nC
Package Parasitic Values							
Gate Resistance	R_{G}	T _A = 25°C			0.65		Ω

^{5.} Pulse Test: pulse width $\pm 300~\mu s$, duty cycle $\pm 2\%$ 6. Switching characteristics are independent of operating junction temperatures.

http://onsemi.com

Figure 6. Drain-to-Source Leakage Current

versus Voltage

Figure 5. On-Resistance Variation with

Temperature

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

Figure 11. Maximum Avalanche Energy versus Starting Junction Temperature

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

	MILLIMETERS					
DIM	MIN	MIN NOM				
Α	0.90	1.00	1.10			
A1	0.00		0.05			
b	0.33	0.41	0.51			
С	0.23	0.28	0.33			
D		5.15 BSC	;			
D1	4.50	4.90	5.10			
D2	3.50	3.50				
E		6.15 BSC				
E1	5.50	5.80	6.10			
E2	3.45		4.30			
е		1.27 BSC				
G	0.51	0.61	0.71			
K	1.20	1.35	1.50			
L	0.51	0.61	0.71			
L1	0.05	0.17	0.20			
М	3.00	3.40	3.80			
θ	0 °		12 °			

- STYLE 1: PIN 1. SOURCE 2. SOURCE

 - 3. SOURCE GATE
 - 5. DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative